The Discontinuous Enrichment Method for Advection-Dominated Transport Phenomena in Computational Fluid Dynamics

Irina Kalashnikova¹, R. Tezaur², C. Farhat^{1,2}

¹ Institute for Computational & Mathematical Engineering (iCME)

² Department of Aeronautics & Astronautics

Stanford University

Bay Area Scientific Computing Day (BASCD 2011) Sunday, May 8, 2011

Outline

- Motivation
- Advection-Diffusion Equation
- Objection Discontinuous Enrichment Method (DEM)
- DEM for the 2D Constant-Coefficient Advection-Diffusion
 - Enrichment Basis
 - Lagrange Multiplier Approximations
 - Element Design
 - Numerical Results
- DEM for 2D Variable-Coefficient Advection-Diffusion
 - Extension of Constant-Coefficient DEM Methodology
 - Numerical Results
- DEM for 2D Unsteady Advection-Diffusion
 - Extension of Steady DEM Methodology
 - Numerical Results
- Summary

- Galerkin Finite Element Method (FEM) has a number of attractions in fluid mechanics:
 - Flexibility in handling complex geometries.
 - Ability to handle different forms of boundary conditions.
- FEM is quasi-optimal for elliptic (diffusion-dominated) PDEs: assures good performance of the computation at any mesh resolution.

- Galerkin Finite Element Method (FEM) has a number of attractions in fluid mechanics:
 - Flexibility in handling complex geometries.
 - Ability to handle different forms of boundary conditions.
- FEM is quasi-optimal for elliptic (diffusion-dominated) PDEs: assures good performance of the computation at any mesh resolution.

However:

coarse mesh accuracy is not guaranteed when the flow is *advection*-dominated!

- Galerkin Finite Element Method (FEM) has a number of attractions in fluid mechanics:
 - Flexibility in handling complex geometries.
 - Ability to handle different forms of boundary conditions.
- FEM is quasi-optimal for elliptic (diffusion-dominated) PDEs: assures good performance of the computation at any mesh resolution.

However:

coarse mesh accuracy is not guaranteed when the flow is *advection*-dominated!

Significant mesh refinement typically needed to capture boundary layer region

- Galerkin Finite Element Method (FEM) has a number of attractions in fluid mechanics:
 - Flexibility in handling complex geometries.
 - Ability to handle different forms of boundary conditions.
- FEM is quasi-optimal for elliptic (diffusion-dominated) PDEs: assures good performance of the computation at any mesh resolution.

However:

coarse mesh accuracy is not guaranteed when the flow is *advection*-dominated!

Significant mesh refinement typically needed to capture boundary layer region

EXPENSIVE!

- Galerkin Finite Element Method (FEM) has a number of attractions in fluid mechanics:
 - Flexibility in handling complex geometries.
 - Ability to handle different forms of boundary conditions.
- FEM is quasi-optimal for elliptic (diffusion-dominated) PDEs: assures good performance of the computation at any mesh resolution.

However:

coarse mesh accuracy is not guaranteed when the flow is *advection*-dominated!

Significant mesh refinement typically needed to capture boundary layer region

EXPENSIVE!

Approach: develop a novel, efficient FEM that can accurately capture boundary
layers for a canonical fluid problem; then generalize.

Scalar Advection-Diffusion Equation

$$\mathcal{L}c = \underbrace{-\kappa\Delta c}_{\text{diffusion}} + \underbrace{\mathbf{a} \cdot \nabla c}_{\text{advection}} = f$$

- 2D advection velocity vector:
 - $\mathbf{a} = (a_1, a_2)^T = |\mathbf{a}|(\cos \phi, \sin \phi)^T.$
- Φ = advection direction.
- \bullet $\kappa = \text{diffusivity}.$

- Describes many transport phenomena in fluid mechanics:
 - Heat transfer.
 - Semi-conductor device modeling.
 - Usual scalar model for the more challenging Navier-Stokes equations.
- Global **Péclet number** (L = length scale associated with Ω):

$$Pe = rac{ ext{rate of advection}}{ ext{rate of diffusion}} = rac{L|\mathbf{a}|}{\kappa} = Re \cdot \left\{ egin{array}{l} Pr & ext{(thermal diffusion)} \\ Sc & ext{(mass diffusion)} \end{array}
ight.$$

Advection-Dominated Regime

 Typical applications: flow is advection-dominated.

Figure 1: Galerkin Q_1 solution (color) vs. exact solution (black) (Pe = 150)

Advection-Dominated
(High Pe) Regime
↓↓
Sharp gradients in exact solution
↓↓
Galerkin FEM inadequate:
spurious oscillations (Fig. 1)

- Some classical remedies:
 - Stabilized FEMs (SUPG, GLS, USFEM): add weighted residual (numerical diffusion) to variational equation.
 - RFB, VMS, PUM: construct conforming spaces that incorporate knowledge of local behavior of solution.

History of the Discontinuous Enrichment Method (DEM) and Its Success

- Acoustic scattering problems (Helmholtz equation) [4,5].
 - First developed by Farhat et. al in 2000 for the Helmholtz equation.
 - A family of 3D hexahedral DEM elements for medium frequency problems achieved the same solution accuracy as Galerkin elements of comparable convergence order using 4-8 times fewer dofs, and up to 60 times less CPU time [4].
 - Domain decomposition-based iterative solver for 2D and 3D acoustic scattering problems in medium- and high-frequency regimes has been developed [5].
- Wave propagation in elastic media (Navier's equation) [6].
- Fluid-structure interaction problems (Navier's equation) and the Helmholtz equation) [7, 8].

History of the Discontinuous Enrichment Method (DEM) and Its Success

- Acoustic scattering problems (Helmholtz equation) [4,5].
 - First developed by Farhat et. al in 2000 for the Helmholtz equation.
 - A family of 3D hexahedral DEM elements for medium frequency problems achieved the same solution accuracy as Galerkin elements of comparable convergence order using 4-8 times fewer dofs, and up to 60 times less CPU time [4].
 - Domain decomposition-based iterative solver for 2D and 3D acoustic scattering problems in medium- and high-frequency regimes has been developed [5].
- Wave propagation in elastic media (Navier's equation) [6].
- Fluid-structure interaction problems (Navier's equation) and the Helmholtz equation) [7, 8].

Excellent performance motivates development of DEM for other applications

→ Fluid Mechanics

Enrichment Field in DEM

Idea of DEM:

"Enrich" the usual Galerkin polynomial field \mathcal{V}^P by the free-space solutions to the governing homogeneous PDE $\mathcal{L}c=0$.

$$c^h = c^P + c^E \in \mathcal{V}^P \oplus (\mathcal{V}^E \backslash \mathcal{V}^P)$$

where

$$V^E = \text{span}\{c : \mathcal{L}c = 0\}$$

Simple 1D Example:

$$\begin{cases} u_x - u_{xx} = 1 + x, & x \in (0, 1) \\ u(0) = 0, u(1) = 1 \end{cases}$$

- Enrichments: $u_x^E u_{xx}^E = 0 \Rightarrow u^E = C_1 + C_2 e^x \Rightarrow V^E = \text{span}\{1, e^x\}.$
- Galerkin FEM polynomials: $\mathcal{V}_{\Omega^e=(x_j,x_{j+1})}^P = \operatorname{span}\left\{\frac{x_{j+1}-x}{h},\frac{x-x_j}{h}\right\}$.

Advection-Diffusion Equation Discontinuous Enrichment Method

What about Inter-Element Continuity?

DEM = DGM with Lagrange Multipliers

 DEM is discontinuous by construction (enrichment field in DEM is not required to vanish at element boundaries).

¹Necessary condition for generating a non-singular global discrete problem.

What about Inter-Element Continuity?

DEM = DGM with Lagrange Multipliers

- DEM is discontinuous by construction (enrichment field in DEM is not required to vanish at element boundaries).
- Continuity across element boundaries is enforced weakly using Lagrange multipliers $\lambda^h \in \mathcal{W}^h$:

$$\lambda^h \approx \nabla c_e^E \cdot \mathbf{n}^e = -\nabla c_{e'}^E \cdot \mathbf{n}^{e'}$$
 on $\Gamma^{e,e'}$ but making sure we uphold the...

Discrete Babuška-Brezzi inf-sup condition¹:

$$\left\{ \begin{array}{l} \text{\# Lagrange multiplier} \\ \text{constraint equations} \end{array} \right. \leq \left. \begin{array}{l} \text{\# enrichment} \\ \text{equations} \end{array} \right\}$$

¹Necessary condition for generating a non-singular global discrete problem.

What about Inter-Element Continuity?

DEM = DGM with Lagrange Multipliers

- DEM is discontinuous by construction (enrichment field in DEM is not required to vanish at element boundaries).
- Continuity across element boundaries is enforced weakly using Lagrange multipliers $\lambda^h \in \mathcal{W}^h$:

$$\lambda^h \approx \nabla c_e^E \cdot \mathbf{n}^e = -\nabla c_{e'}^E \cdot \mathbf{n}^{e'}$$
 on $\Gamma^{e,e'}$ but making sure we uphold the...

Discrete Babuška-Brezzi inf-sup condition¹:

$$\left\{ \begin{array}{l} \text{\# Lagrange multiplier} \\ \text{constraint equations} \end{array} \right. \leq \left. \begin{array}{l} \text{\# enrichment} \\ \text{equations} \end{array} \right\}$$

$$\Rightarrow n^{\lambda} = \left\lfloor \frac{n^{E}}{4} \right\rfloor$$

¹Necessary condition for generating a non-singular global discrete problem.

Hybrid Variational Formulation of DEM

Strong form:

(S) :
$$\begin{cases} \text{Find } c \in H^1(\Omega) \text{ such that} \\ -\kappa \Delta c + \mathbf{a} \cdot \nabla c = f, & \text{in } \Omega \\ c = g, & \text{on } \Gamma = \partial \Omega \end{cases}$$

Notation: $$\begin{split} & \overset{\bullet}{\tilde{\Omega}} = \cup_{e=1}^{n_{el}} \Omega^{e} \\ & \overset{\bullet}{\Gamma} = \cup_{e=1}^{n_{el}} \Gamma^{e} \\ & \Gamma^{e,e'} = \Gamma^{e} \cap \Gamma^{e'} \\ & \Gamma^{\text{int}} = \cup_{e' < e} \cup_{e=1}^{n_{el}} \left\{ \Gamma^{e} \cap \Gamma^{e'} \right\} \end{split}$$

Hybrid Variational Formulation of DEM

Strong form:

$$(S): \left\{ egin{array}{ll} \operatorname{Find} \ c \in H^1(\Omega) \ \operatorname{such that} \ -\kappa \Delta c + \mathbf{a} \cdot
abla c &= f, & \operatorname{in} \Omega \ c &= g, & \operatorname{on} \Gamma = \partial \Omega \ c_e - c_{e'} &= 0, & \operatorname{on} \Gamma^{\operatorname{int}} \end{array}
ight.$$

$$\begin{split} & \underline{\text{Notation:}} \\ & \underline{\tilde{\Omega}} = \cup_{e=1}^{n_{el}} \Omega^e \\ & \underline{\tilde{\Gamma}} = \cup_{e=1}^{n_{el}} \Gamma^e \\ & \underline{\Gamma}^{e,e'} = \underline{\Gamma}^e \cap \underline{\Gamma}^{e'} \\ & \underline{\Gamma}^{\text{int}} = \cup_{e' < e} \cup_{e=1}^{n_{el}} \left\{ \underline{\Gamma}^e \cap \underline{\Gamma}^{e'} \right\} \end{split}$$

Hybrid Variational Formulation of DEM

Strong form:

$$(S): \left\{ egin{array}{ll} \operatorname{Find} \ c \in H^1(\Omega) \ \operatorname{such\ that} \ -\kappa \Delta c + \mathbf{a} \cdot
abla c &= f, & \operatorname{in} \Omega \ c &= g, & \operatorname{on} \Gamma = \partial \Omega \ c_e - c_{e'} &= 0, & \operatorname{on} \Gamma^{\operatorname{int}} \end{array}
ight.$$

Weak hybrid variational form:

$$\text{Weak hybrid variational form:} \\ (W): \begin{cases} \text{Find } (c,\lambda) \in \mathcal{V} \times \mathcal{W} \text{ such that:} \\ a(v,c) + b(\lambda,v) = r(v) \\ b(\mu,c) = -r_d(\mu) \\ \text{holds } \forall c \in \mathcal{V}, \forall \mu \in \mathcal{W}. \end{cases} \\ \text{where} \\ a(v,c) = (\kappa \nabla v + v\mathbf{a}, \nabla c)_{\tilde{\Omega}} \end{cases} \\ \text{Weak hybrid variational form:} \\ \tilde{\Omega} = \mathcal{O}_{e=1}^{n_{el}} \Omega^{e} \\ \tilde{\Gamma} = \mathcal{O}_{e=1}^{n_{el}} \Gamma^{e} \\ \tilde{\Gamma} = \mathcal{O}_{e=1}^{n_{el}} \Gamma^{e} \\ \Gamma^{e,e'} = \Gamma^{e} \cap \Gamma^{e'} \\ \Gamma^{int} = \cup_{e' < e} \cup_{e=1}^{n_{el}} \left\{ \Gamma^{e} \cap \Gamma^{e'} \right\} \end{cases}$$

$$a(v,c) = (\kappa \nabla v + v\mathbf{a}, \nabla c)_{\tilde{\Omega}}$$

$$b(\lambda, v) = \sum_{e} \sum_{e' < e} \int_{\Gamma^{e,e'}} \lambda(v_{e'} - v_e) d\Gamma + \int_{\Gamma} \lambda v \ d\Gamma$$

$$\begin{split} \tilde{\Omega} &= \cup_{e=1}^{n_{el}} \Omega^e \\ \tilde{\Gamma} &= \cup_{e=1}^{n_{el}} \Gamma^e \\ \Gamma^{e,e'} &= \Gamma^e \cap \Gamma^{e'} \\ \Gamma^{int} &= \cup_{e' < e} \cup_{e=1}^{n_{el}} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \end{split}$$

Strong form:

$$(S): \left\{ egin{array}{ll} \operatorname{Find} \ c \in H^1(\Omega) \ \operatorname{such that} \ -\kappa \Delta c + \mathbf{a} \cdot
abla c &= f, & \operatorname{in} \Omega \ c &= g, & \operatorname{on} \Gamma = \partial \Omega \ c_e - c_{e'} &= 0, & \operatorname{on} \Gamma^{\operatorname{int}} \end{array}
ight.$$

Weak hybrid variational form:

$$\text{Weak hybrid variational form:} \\ (W): \left\{ \begin{array}{ll} \text{Find } (c,\lambda) \in \mathcal{V} \times \mathcal{W} \text{ such that:} \\ a(v,c) &+ b(\lambda,v) &= r(v) \\ b(\mu,c) &= -r_d(\mu) \\ \text{holds } \forall c \in \mathcal{V}, \forall \mu \in \mathcal{W}. \\ \text{where} \\ a(v,c) = (\kappa \nabla v + v\mathbf{a}, \nabla c)_{\tilde{\Omega}} \end{array} \right. \quad \frac{\text{Notation:}}{\tilde{\Omega} = \bigcup_{e=1}^{n_{el}} \Omega^e} \tilde{\Gamma}^e \\ \Gamma^{e,e'} &= \Gamma^e \cap \Gamma^{e'} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e=1}^{n_{el}} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{e,e'} &= \Gamma^e \cap \Gamma^{e'} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e=1}^{n_{el}} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{e,e'} &= \Gamma^e \cap \Gamma^{e'} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e=1}^{n_{el}} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{e,e'} &= \Gamma^e \cap \Gamma^{e'} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e=1}^{n_{el}} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{e,e'} &= \Gamma^e \cap \Gamma^{e'} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e=1}^{n_{el}} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e=1}^{n_{el}} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \\ \Gamma^{\text{int}} &= \bigcup_{e' < e} \bigcup_{e' \in E} \left\{ \Gamma^e \cap \Gamma$$

$$a(v,c) = (\kappa \nabla v + v\mathbf{a}, \nabla c)_{\tilde{\Omega}}$$

$$b(\lambda, v) = \sum_{e} \sum_{e' < e} \int_{\Gamma^{e,e'}} \lambda(v_{e'} - v_e) d\Gamma + \int_{\Gamma} \lambda v \ d\Gamma$$

$$\begin{split} & \overset{\cap}{\tilde{\Omega}} = \cup_{e=1}^{n_{el}} \Omega^{e} \\ & \overset{\cap}{\Gamma} = \cup_{e=1}^{n_{el}} \Gamma^{e} \\ & \Gamma^{e,e'} = \Gamma^{e} \cap \Gamma^{e'} \\ & \Gamma^{\text{int}} = \cup_{e' < e} \cup_{e=1}^{n_{el}} \left\{ \Gamma^{e} \cap \Gamma^{e'} \right\} \end{split}$$

Discretization & Implementation

• Element matrix problem (uncondensed):

$$\left(\begin{array}{ccc} \mathbf{k}^{\mathrm{PP}} & \mathbf{k}^{\mathrm{PE}} & \mathbf{k}^{\mathrm{PC}} \\ \mathbf{k}^{\mathrm{EP}} & \mathbf{k}^{\mathrm{EE}} & \mathbf{k}^{\mathrm{EC}} \\ \mathbf{k}^{\mathrm{CP}} & \mathbf{k}^{\mathrm{CE}} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} \mathbf{c}^{\mathrm{P}} \\ \mathbf{c}^{\mathrm{E}} \\ \boldsymbol{\lambda}^{h} \end{array}\right) = \left(\begin{array}{c} \mathbf{r}^{\mathrm{P}} \\ \mathbf{r}^{\mathrm{E}} \\ \mathbf{r}^{\mathrm{C}} \end{array}\right)$$

Discretization & Implementation

• Element matrix problem (uncondensed):

$$\left(\begin{array}{ccc} \boldsymbol{k}^{PP} & \boldsymbol{k}^{PE} & \boldsymbol{k}^{PC} \\ \boldsymbol{k}^{EP} & \boldsymbol{k}^{EE} & \boldsymbol{k}^{EC} \\ \boldsymbol{k}^{CP} & \boldsymbol{k}^{CE} & \boldsymbol{0} \end{array} \right) \left(\begin{array}{c} \boldsymbol{c}^{P} \\ \boldsymbol{c}^{E} \\ \boldsymbol{\lambda}^{h} \end{array} \right) = \left(\begin{array}{c} \boldsymbol{r}^{P} \\ \boldsymbol{r}^{E} \\ \boldsymbol{r}^{C} \end{array} \right)$$

Due to the discontinuous nature of \mathcal{V}^E , \mathbf{c}^E can be eliminated at the element level by a static condensation

Statically-condensed DEM Element:

$$\left(\begin{array}{cc} \tilde{\boldsymbol{k}}^{PP} & \tilde{\boldsymbol{k}}^{PC} \\ \tilde{\boldsymbol{k}}^{CP} & \tilde{\boldsymbol{k}}^{CC} \end{array}\right) \left(\begin{array}{c} \boldsymbol{c}^P \\ \boldsymbol{\lambda}^h \end{array}\right) = \left(\begin{array}{c} \tilde{\boldsymbol{r}}^P \\ \tilde{\boldsymbol{r}}^C \end{array}\right)$$

Discretization & Implementation

• Element matrix problem (uncondensed):

$$\left(\begin{array}{ccc} \boldsymbol{k}^{PP} & \boldsymbol{k}^{PE} & \boldsymbol{k}^{PC} \\ \boldsymbol{k}^{EP} & \boldsymbol{k}^{EE} & \boldsymbol{k}^{EC} \\ \boldsymbol{k}^{CP} & \boldsymbol{k}^{CE} & \boldsymbol{0} \end{array} \right) \left(\begin{array}{c} \boldsymbol{c}^{P} \\ \boldsymbol{c}^{E} \\ \boldsymbol{\lambda}^{h} \end{array} \right) = \left(\begin{array}{c} \boldsymbol{r}^{P} \\ \boldsymbol{r}^{E} \\ \boldsymbol{r}^{C} \end{array} \right)$$

Due to the discontinuous nature of \mathcal{V}^E , \mathbf{c}^E can be eliminated at the element level by a static condensation

Statically-condensed DEM Element:

$$\left(\begin{array}{cc} \tilde{\mathbf{k}}^{\mathrm{PP}} & \tilde{\mathbf{k}}^{\mathrm{PC}} \\ \tilde{\mathbf{k}}^{\mathrm{CP}} & \tilde{\mathbf{k}}^{\mathrm{CC}} \end{array}\right) \left(\begin{array}{c} \mathbf{c}^{\mathrm{P}} \\ \boldsymbol{\lambda}^{h} \end{array}\right) = \left(\begin{array}{c} \tilde{\mathbf{r}}^{\mathrm{P}} \\ \tilde{\mathbf{r}}^{\mathrm{C}} \end{array}\right)$$

Computational complexity depends on $\dim \mathcal{V}^h$ not on $\dim \mathcal{V}^E$

Angle-Parametrized Enrichment Functions for 2D Advection-Diffusion

• Derived by solving $\mathcal{L}c^E = \mathbf{a} \cdot \nabla c^E - \kappa \Delta c^E = 0$ analytically (e.g., separation of variables).

$$c^{E}(\mathbf{x}; \theta_{i}) = e^{\left(\frac{a_{1} + |\mathbf{a}|\cos\theta_{i}}{2\kappa}\right)(\mathbf{x} - \mathbf{x}_{r,i})} e^{\left(\frac{a_{2} + |\mathbf{a}|\sin\theta_{i}}{2\kappa}\right)(\mathbf{y} - \mathbf{y}_{r,i})}$$

$$\Theta^{c} = \{\theta_{i}\}_{i=1}^{r^{E}} \in [0, 2\pi) = \text{ set of angles specifying } \mathcal{V}^{E}$$
(1)

Figure 2: Plots of enrichment functions $c^E(\mathbf{x}; \theta_i)$ for several values of θ_i (Pe = 20)

Parametrization with respect to θ_i in (1) enables systematic element design!

Lagrange Multiplier Approximations

$$S = I$$

$$S = I$$

$$S = I$$

$$S = 0$$

$$\Omega^{e,e'}$$

$$S = 0$$

$$\lambda^h pprox
abla c_e^{\mathsf{E}} \cdot \mathbf{n}^e = -
abla c_{e'}^{\mathsf{E}} \cdot \mathbf{n}^{e'}$$

Figure 3: Straight edge $\Gamma^{e,e'}$ oriented at angle $\alpha^{e,e'} \in [0, 2\pi)$

Trivial to compute given exponential enrichments:

$$\lambda^{h}(s)|_{\Gamma^{e,e'}} \approx \nabla c^{E} \cdot \mathbf{n}|_{\Gamma_{e,e'}}$$

$$= const \cdot e^{\left\{\frac{|\mathbf{a}|}{2\kappa}\left[\cos(\phi - \alpha^{e,e'}) + \cos(\theta_{k} - \alpha^{e,e'})\right](s - s_{r}^{e,e'})\right\}}$$

$$(2)$$

Lagrange Multiplier Approximations

$$S = I$$

$$S =$$

Figure 3: Straight edge $\Gamma^{e,e'}$ oriented at angle $\alpha^{e,e'} \in [0,2\pi)$

$$\lambda^h \approx \nabla c_e^E \cdot \mathbf{n}^e = -\nabla c_{e'}^E \cdot \mathbf{n}^{e'}$$

Limit n^{λ} to satisfy *inf-sup*:

Use $\left\lfloor \frac{n^{E}}{4} \right\rfloor$ Lagrange multipliers of the form (2)

Trivial to compute given exponential enrichments:

$$egin{aligned} \lambda^h(s)|_{\Gamma^{e,e'}} &pprox
abla c^E \cdot \mathbf{n}|_{\Gamma_{e,e'}} \ &= const \cdot e^{\left\{ egin{aligned} rac{|\mathbf{a}|}{2\kappa} \left[\cos(\phi - lpha^{e,e'}) + \cos(heta_k - lpha^{e,e'})
ight](s - s_r^{e,e'})
ight\}} \end{aligned}$$

Non-trivial to satisfy *inf-sup* condition: the set Θ^c that defines \mathcal{V}^E typically leads to too many Lagrange multiplier dofs!

Mesh Independent Element Design Procedure

Algorithm 1. "Build Your Own DEM Element"

Fix $n^E \in \mathbb{N}$ (the desired number of angles defining \mathcal{V}^E).

Select a set of n^E distinct angles $\{\theta_k\}_{k=1}^{n^E}$ between $[0, 2\pi)$.

Set $\Theta^c = \{\theta_i\}_{i=1}^{n^E}$.

Define the enrichment functions by:

$$c^{\mathsf{E}}(\boldsymbol{x};\boldsymbol{\Theta}^{\mathsf{c}}) = e^{\left(\frac{a_1 + |\mathbf{a}|\cos\Theta^{\mathsf{c}}}{2\kappa}\right)(x - x_{\mathsf{r},i})} e^{\left(\frac{a_2 + |\mathbf{a}|\sin\Theta^{\mathsf{c}}}{2\kappa}\right)(y - y_{\mathsf{r},i})}$$

Determine $n^{\lambda} = \left| \frac{n^{E}}{4} \right|$.

for each edge $\Gamma^{e,e'} \in \Gamma^{int}$

Compute max and min of $\frac{|\mathbf{a}|}{2\kappa} \left[\cos(\phi - \alpha^{e,e'}) + \cos(\theta_k - \alpha^{e,e'}) \right]$, call them $\Lambda_{\min}^{e,e'}, \Lambda_{\max}^{e,e'}$.

Sample $\{\Lambda_i^{e,e'}: i=1,...,n^{\lambda}\}$ uniformly in the interval $[\Lambda_{min}^{e,e'},\Lambda_{max}^{e,e'}]$.

Define the Lagrange multipliers approximations on $\Gamma^{e,e'}$ by:

$$\left| \lambda^h |_{\Gamma^{e,e'}} = \operatorname{span} \left\{ e^{\Lambda_i^{e,e'}(s - s_{r,i}^{e,e'})}, \ 0 \le s \le h \right\} \right|$$

end for

Element Nomenclature

Notation

DGM Element: $Q-n^E-n^\lambda$

DEM Element: $Q - n^E - n^{\lambda +} \equiv [Q - n^E - n^{\lambda}] \cup [Q_1]$

'Q': Quadrilateral

n^E: Number of Enrichment Functions

 n^{λ} : Number of Lagrange Multipliers per Edge

Q1: Galerkin Bilinear Quadrilateral Element

	Name	n ^E	Θ^c	n^{λ}
DGM elements	Q-4-1	4	$\phi + \left\{ \frac{m\pi}{2} : m = 0,, 3 \right\}$	1
	Q-8-2	8	$\phi + \{\frac{\bar{m}\pi}{4} : m = 0,, 7\}$	2
	Q-12-3	12	$\phi + \{\frac{m\dot{\pi}}{6} : m = 0,, 11\}$	3
	<i>Q</i> -16-4	16	$\phi + \left\{ \frac{m\pi}{8} : m = 0,, 15 \right\}$	4
DEM elements	Q-5-1 ⁺	5	$\phi + \left\{ \frac{2m\pi}{5} : m = 0,, 4 \right\}$	1
	Q-9-2 ⁺	9	$\phi + \left\{ \frac{2\ddot{m}\pi}{9} : m = 0,, 8 \right\}$	2
	Q-13-3 ⁺	13	$\phi + \left\{ \frac{2m\pi}{13} : m = 0,, 12 \right\}$	3
	Q-17-4 ⁺	17	$\phi + \left\{ \frac{2m\pi}{17} : m = 0,, 16 \right\}$	4

ivation Advection-Diffusion Equation Discontinuous Enrichment Method Enrichment Basis Lagrange Multiplier Approximations Element Design

Illustration of the Sets Θ^c for the DEM Elements

Motivation Advection-Diffusion Equation Discontinuous Enrichment Method Enrichment Basis Lagrange Multiplier Approximations Element Design Nu

Computational Complexities

Element	Asymptotic # of dofs	Stencil width for uniform $n \times n$ mesh	(# dofs) \times (stencil width)	L ² convergence rate (a posteriori)
Q_1	n _{el}	9	9n _{el}	2
Q-4-1	2n _{el}	7	14 <i>n</i> _{el}	2
Q_2	3n _{el}	21	63 <i>n_{el}</i>	3
Q-8-2	4n _{el}	14	56 <i>n</i> _{el}	3
Q-5-1+	3n _{el}	21	63 <i>n</i> el	2 - 3
Q_3	5n _{el}	33	165 <i>n</i> _{el}	4
Q-12-3	6n _{el}	21	126 <i>n_{el}</i>	4
Q-9-2 ⁺	5n _{el}	33	165 <i>n_{el}</i>	3 – 4
Q_4	7n _{el}	45	315 <i>n</i> _{el}	5
Q-16-4	8n _{el}	28	224n _{el}	5
Q-13-3 ⁺	7n _{el}	45	315 <i>n</i> _{el}	4 – 5
Q-17-4 ⁺	9 <i>n_{el}</i>	57	513n _{el}	4 – 5

Figure 4: Q₁ stencil

Figure 5: Q-4-1 stencil

Summary of Computational Properties

"COMPARABLES" A priori in A poste

computational cost:

- DGM with n LMs and Q_n
- DEM with n LMs and Q_{n+1}

A posteriori in convergence rate:

- DGM with n LMs and Q_n
- DEM with *n* LMs and Q_n/Q_{n+1}

- Exponential enrichments ⇒ integrations can be computed analytically.
- $\mathcal{L}c^E = 0 \Rightarrow$ convert volume integrals to boundary integrals:

$$a(v^{E}, c^{E}) = \int_{\tilde{\Omega}} (\kappa \nabla v^{E} \cdot \nabla c^{E} + \mathbf{a} \cdot \nabla c^{E} v^{E}) d\Omega$$

=
$$\int_{\tilde{\Gamma}} \nabla c^{E} \cdot \mathbf{n} v^{E} d\Gamma$$

•
$$\Omega = (0,1) \times (0,1), f = 0.$$

•
$$\mathbf{a} = (\cos \phi, \sin \phi)$$
.

 Dirichlet boundary conditions are specified on Γ such that the exact solution to the BVP is given by

$$c_{\mathrm{ex}}(\mathbf{x};\phi,\psi) = \frac{e^{\frac{1}{2\kappa}\left\{\left[\cos\phi + \cos\psi\right](x-1) + \left[\sin\phi + \sin\psi\right](y-1)\right\}} - 1}{e^{-\frac{1}{2\kappa}\left[\cos\phi + \cos\psi + \sin\phi + \sin\psi\right]} - 1}$$

- $\psi \in [0, 2\pi)$: some flow direction (not necessarily aligned with ϕ).
- Solution exhibits a sharp exponential boundary layer in the advection direction ϕ , whose gradient is a function of the Péclet number.

Figure 6: $\phi = \psi = 0$

Figure 7: $\phi = \pi/7, \psi = 0$

Convergence Analysis & Results ($\phi = \pi/7, \psi = 0$)

Element	Rate of convergence	# dofs to achieve 10 ⁻³ error
Q_1	1.90	63,266
Q-4-1	1.99	14,320
Q_2	2.38	24,300
Q-8-2	3.27	5400
Q_3	3.48	12,500
Q-12-3	3.88	850
Q_4	4.41	8600
Q-16-4	5.19	570

- To achieve for this problem the relative error of 0.1% for $Pe = 10^3$:
 - Q-4-1 and Q-8-2 require \approx 4.5 \times **fewer** dofs than Q₁ and Q₂ respectively.
 - Q-12-3 and Q-16-4 require \approx 15 \times **fewer** dofs than Q₃ and Q₄ respectively.

on Advection-Diffusion Equation Discontinuous Enrichment Method Enrichment Basis Lagrange Multiplier Approximations Ele

Convergence Analysis & Results ($\phi = \pi/7, \psi = 0$)

Element	Rate of convergence	# dofs to achieve 10 ⁻³ error
Q ₁	1.90	63,266
Q-4-1	1.99	14,320
Q_2	2.38	24,300
Q-8-2	3.27	5400
Q_3	3.48	12,500
Q-12-3	3.88	850
Q_4	4.41	8600
Q-16-4	5.19	570

- To achieve for this problem the relative error of 0.1% for $Pe = 10^3$:
 - Q-4-1 and Q-8-2 require \approx 4.5 \times **fewer** dofs than Q₁ and Q₂ respectively.

$$\Rightarrow$$
 8 \times less CPU time.

• Q-12-3 and Q-16-4 require \approx 15 \times **fewer** dofs than Q₃ and Q₄ respectively.

 \Rightarrow 40 \times less CPU time.

Advection-Diffusion Equation Discontinuous Enrichment Method Enrichment Basis Lagrange Multiplier Approximations Element Design Nu

Solution Plots for Homogeneous BVP

Figure 8: $\phi = \psi = 0$, $Pe = 10^3$, ≈ 1600 dofs

Q-12-3

Extension to Variable-Coefficient Problems

- Define V^E within each element as the free-space solutions to the homogeneous PDE, with locally-frozen coefficients.
- $\mathbf{a}(\mathbf{x}) \approx \mathbf{a}^e$ =constant inside each element Ω^e as $h \to 0$:

$$\{\mathbf{a}(\mathbf{x})\cdot\nabla c - \kappa\Delta c = f(\mathbf{x}) \text{ in } \Omega\} \approx \cup_{e=1}^{n_{el}} \{\mathbf{a}^e\cdot\nabla c - \kappa\Delta c = f(\mathbf{x}) \text{ in } \Omega^e\}.$$

$$\mathbf{a}^{e} \equiv \begin{pmatrix} -y_{j} - \frac{h}{2} \\ x_{j} + \frac{h}{2} \end{pmatrix} \qquad \mathbf{a}^{e'} \equiv \begin{pmatrix} -y_{j} - \frac{h}{2} \\ x_{j} + \frac{3h^{2}}{2} \end{pmatrix} \qquad \mathbf{a}(\mathbf{x})^{\uparrow} = \begin{pmatrix} -y, & x \end{pmatrix}^{T}$$

$$y_{j} \qquad \qquad y_{j} \qquad \qquad y_{j} + h \qquad \qquad x_{j} + 2h$$

Enrichment in each element:

$$c_e^{\textit{E}}(\textbf{x};\theta_i^{\textit{e}}) = e^{\frac{|\textbf{a}^{\textit{e}}|}{2\kappa}(\cos\phi^{\textit{e}} + \cos\theta_i^{\textit{e}})(x - x_{r,i}^{\textit{e}})} e^{\frac{|\textbf{a}^{\textit{e}}|}{2\kappa}(\sin\phi^{\textit{e}} + \sin\theta_i^{\textit{e}})(y - y_{r,i}^{\textit{e}})} \in \mathcal{V}_e^{\textit{E}}$$

Inhomogeneous Rotating Advection Problem on an L-Shaped Domain

Figure 10: L-shaped domain and rotating velocity field (curved lines indicate streamlines)

- Homogeneous Dirichlet boundary conditions are prescribed on all six sides of L—shaped domain Ω.
- Source: *f* = 1.
- $\mathbf{a}^T(\mathbf{x}) = (1 y, x).$
- Outflow boundary layer along the line y = 1.
- Second boundary layer that terminates in the vicinity of the re-entrant corner (x, y) = (0.5, 0.5).

tition Advection-Diffusion Equation Discontinuous Enrichment Method Extension of Constant-Coefficient DEM Methodology Numerical Results

Solutions Plots for $Pe = 10^3$ with ≈ 3000 dofs

^{* &}quot;Stabilized Q₁" is upwind stabilized bilinear finite element by Harari et. al.

Convergence Analysis & Results

Element	Rate of convergence	# dofs to achieve 10 ⁻² error
Q_2	1.94	62, 721
Q-5-1 ⁺	1.55	21,834
Q_3	2.67	33, 707
Q-9-2 ⁺	2.37	7, 568
Q_4	3.50	20, 796
Q-13-3 ⁺	3.23	5, 935
Q-17-4 ⁺	3.26	4, 802

- * "Stabilized Q₁" is upwind stabilized bilinear finite element proposed by Harari et. al.
- To achieve for this problem the relative error of 1% for $Pe = 10^3$:
 - Q-5-1⁺ requires 2.9 \times **fewer** dofs than Q₂ (same **sparsity**).
 - Q-9-2⁺ requires 4.5 \times **fewer** dofs than Q_3 (same **sparsity**).
 - Q-13-3⁺ requires 3.5 \times **fewer** dofs than Q_4 (same **sparsity**).

n Advection-Diffusion Equation Discontinuous Enrichment Method Extension of Constant-Coefficient DEM Methodology Numerical Results

Convergence Analysis & Results

Element	Rate of convergence	# dofs to achieve 10 ⁻² error
Q_2	1.94	62, 721
Q-5-1 ⁺	1.55	21, 834
Q_3	2.67	33, 707
Q-9-2 ⁺	2.37	7, 568
Q_4	3.50	20, 796
Q-13-3 ⁺	3.23	5, 935
Q-17-4 ⁺	3.26	4, 802

- * "Stabilized Q₁" is upwind stabilized bilinear finite element proposed by Harari et. al.
- To achieve for this problem the relative error of 1% for $Pe = 10^3$:
 - Q-5-1⁺ requires 2.9 \times **fewer** dofs than Q₂ (same **sparsity**).
 - \Rightarrow 3.6 \times less CPU time.
 - Q-9-2⁺ requires 4.5 \times **fewer** dofs than Q_3 (same **sparsity**).
 - \Rightarrow 9.2 \times less CPU time.
 - Q-13-3⁺ requires 3.5 × **fewer** dofs than Q_4 (same **sparsity**).

DEM for the Unsteady Advection-Diffusion Equation

Unsteady advection-diffusion equation:

$$c_t + \mathbf{a}(\mathbf{x}, t) \cdot \nabla c - \kappa \Delta c = 0$$

DEM for the Unsteady Advection-Diffusion Equation

• Unsteady advection-diffusion equation::

$$c_t + \mathbf{a}(\mathbf{x}, t) \cdot \nabla c - \kappa \Delta c = 0$$

Semi-discrete form of PDE (with semi-implicit Euler) at time n:

$$\frac{c^{n+1}-c^n}{\Delta t}+ \mathbf{a}^n(\mathbf{x})\cdot\nabla c^{n+1}-\kappa\Delta c^{n+1}=0$$

DEM for the Unsteady Advection-Diffusion Equation

Unsteady advection-diffusion equation:

$$c_t + \mathbf{a}(\mathbf{x}, t) \cdot \nabla c - \kappa \Delta c = 0$$

Semi-discrete form of PDE (with semi-implicit Euler) at time n:

$$\frac{c^{n+1}}{\Delta t} + \mathbf{a}^{n}(\mathbf{x}) \cdot \nabla c^{n+1} - \kappa \Delta c^{n+1} = 0$$

 Enrichment functions inside each element at time step n are the free-space solutions to steady version of the equation above:

$$\mathcal{V}_{e}^{\textit{E},n} = \text{span}\{\textit{c}^{\textit{n}}(\textbf{x}): \textbf{a}^{\textit{n}-1}(\bar{\textbf{x}}_{e}) \cdot \nabla \textit{c}^{\textit{n}} - \kappa \Delta \textit{c}^{\textit{n}} = 0, \textbf{x} \in \Omega^{\textit{e}}\}$$

where

 $\mathcal{V}_{e}^{E,n} = \text{enrichment field inside element } \Omega^{e} \text{ at time step } n$

$$\bar{\mathbf{x}}_e \equiv \text{midpoint of element } \Omega^e$$

Natural Convection in a Differentially-Heated Cavity

 Incompressible Navier-Stokes equations with Boussinesq temperature approximation.

$$\left\{ \begin{array}{rcl} \nabla \cdot \boldsymbol{u} &= 0 \\ \frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} - \frac{1}{Gr^{0.5}} \Delta \boldsymbol{u} &= -\nabla \rho + T \boldsymbol{e}_2 \\ \frac{\partial \mathcal{T}}{\partial t} + \boldsymbol{u} \cdot \nabla \mathcal{T} - \frac{1}{PrGr^{0.5}} \Delta \mathcal{T} &= 0 \end{array} \right.$$

where

$$\mathbf{u}^T = (u_1(\mathbf{x}, t), u_2(\mathbf{x}, t))$$
: fluid velocity vector $p = p(\mathbf{x}, t)$: fluid pressure $T = T(\mathbf{x}, t)$: fluid temperature

- $\Omega = (0,1)^2$.
- No-slip boundary conditions on u on sides of box.
- At time t = 0 begin to heat right wall; top walls of box are insulating (adiabatic).

Natural Convection in a Differentially-Heated Cavity

Incompressible Navier-Stokes equations with Boussinesq temperature approximation.

$$\left\{ \begin{array}{rcl} \nabla \cdot \boldsymbol{u} &= 0 \\ \frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} - \frac{1}{Gr^{0.5}} \Delta \boldsymbol{u} &= -\nabla \rho + T \boldsymbol{e}_2 \\ \frac{\partial \mathcal{T}}{\partial t} + \boldsymbol{u} \cdot \nabla \mathcal{T} - \frac{1}{PrGr^{0.5}} \Delta \mathcal{T} &= 0 \end{array} \right.$$

where

$$\mathbf{u}^T = (u_1(\mathbf{x}, t), u_2(\mathbf{x}, t))$$
: fluid velocity vector $p = p(\mathbf{x}, t)$: fluid pressure $T = T(\mathbf{x}, t)$: fluid temperature

- $\Omega = (0,1)^2$.
- No-slip boundary conditions on u on sides of box.
- At time t = 0 begin to heat right wall; top walls of box are insulating (adiabatic).

Temperature gradient induces counterclockwise flow field

Simulation: Galerkin T vs. DGM T (Ra = Gr = 1000)

u, v: Galerkin Q_3 p: Galerkin Q_2

T: Galerkin Q_1 T: DGM Q-4-1

Summary

Discontinuous Enrichment Method (DEM) = efficient, competitive alternative to stabilized FEMs for advection-dominated transport problems in CFD.

- Parametrization of exponential basis enables systematic design of DEM elements of arbitrary orders.
- Augmentation of enrichment space with additional free-space solutions can improve further the approximation.
- For all test problems, enriched elements outperform their Galerkin and stabilized Galerkin counterparts of comparable computational complexity, sometimes by many orders of magnitude.
- In a high Péclet regime, DGM and DEM solutions are almost completely oscillation-free, in contrast with the Galerkin solutions.
- Advection-diffusion work generalizable to more complex equations in fluid mechanics (e.g., non-linear, unsteady, 3D).
- Future work: DEM for incompressible Navier-Stokes.

Motivation Advection-Diffusion Equation Discontinuous Enrichment Method

References

$(www.stanford.edu/\sim irinak/pubs.html)$

- [1] I. Kalashnikova, R. Tezaur, C. Farhat. A Discontinuous Enrichment Method for Variable Coefficient Advection-Diffusion at High Peclet Number. *Int. J. Numer. Meth. Engng.* (accepted)
- [2] C. Farhat, I. Kalashnikova, R. Tezaur. A Higher-Order Discontinuous Enrichment Method for the Solution of High Peclet Advection-Diffusion Problems on Unstructured Meshes. *Int. J. Numer. Meth. Engng.* 81 (2010) 604-636.
- [3] I. Kalashnikova, C. Farhat, R. Tezaur. A Discontinuous Enrichment Method for the Solution of Advection-Diffusion Problems in high Peclet Number Regimes. Fin. El. Anal. Des. 45 (2009) 238-250.
- [4] R. Tezaur, C. Farhat. Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems. *Int. J. Numer. Methods Engng.* **66** (2006) 796–815.
- [5] C. Farhat, R. Tezaur, J. Toivanen. A domain decomposition method for discontinuous Galerkin discretization of Helmholtz problems with plane waves and Lagrange multipliers. *Int. J. Numer. Method. Engng.* **78** (2009) 1513–1531.
- [6] R. Tezaur, L. Zhang, C. Farhat. A discontinuous method for capturing evanescent waves in multi-scale fluid and fluid/solid problems. *Comput. Methods Appl. Mech. Engng.* **197** (2008) 1680–1698.
- [7] P. Massimi, R. Tezaur, C. Farhat. A discontinuous enrichment method for three-dimensional multiscale harmonic wave propagation problems in multi-fluid and fluid-solid media. *Int. J. Numer. Methods Engng.* **76** (2008) 400-425.
- [8] L. Zhang, R. Tezaur, C. Farhat. The discontinuous enrichment method for elastic wave propagation in the medium-frequency regime. *Int. J. Numer. Methods Engng.* **66** (2006) 2086–2114.

